Decoupling correlated and uncorrelated parametric uncertainty contributions for nonlinear models
نویسندگان
چکیده
منابع مشابه
Separating Models of Learning from Correlated and Uncorrelated Data
We consider a natural framework of learning from correlated data, in which successive examples used for learning are generated according to a random walk over the space of possible examples. Previous research has suggested that the Random Walk model is more powerful than comparable standard models of learning from independent examples, by exhibiting learning algorithms in the Random Walk framew...
متن کاملParametric process synthesis for general nonlinear models
This paper presents a new approach towards parametric analysis of MINLP models in the context of process synthesis problems under uncertainty. The approach is based on the idea of High Dimensional Model Representation technique which utilize a reduced number of model runs to build an uncertainty propagation model that expresses the variability of optimal solution in the uncertain space. Based o...
متن کاملCorrelated Non-Parametric Latent Feature Models
We are often interested in explaining data through a set of hidden factors or features. When the number of hidden features is unknown, the Indian Buffet Process (IBP) is a nonparametric latent feature model that does not bound the number of active features in dataset. However, the IBP assumes that all latent features are uncorrelated, making it inadequate for many realworld problems. We introdu...
متن کاملPattern recognition in correlated and uncorrelated noise.
This study examined how correlated, or filtered, noise affected efficiency for recognizing two types of signal patterns, Gabor patches and three-dimensional objects. In general, compared with the ideal observer, human observers were most efficient at performing tasks in low-pass noise, followed by white noise; they were least efficient in high-pass noise. Simulations demonstrated that contrast-...
متن کاملNonlinear Parametric Hidden Markov Models
In previous work [4], we extended the hidden Markov model (HMM) framework to incorporate a global parametric variation in the output probabilities of the states of the HMM. Development of the parametric HMM was motivated by the task of simultaneoiusly recognizing and interpreting gestures that exhibit meaningful variation. With standard HMMs, such global variation confounds the recognition proc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 2013
ISSN: 0307-904X
DOI: 10.1016/j.apm.2013.05.036